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ABSTRACT 

This paper explores the analytical methods of synthesizing linear antenna arrays. The synthesis employed is 

based on non-uniform methods. In particular, the Dolph-Chebyshev and binomial methods are used, so as to 

improve the directivity of the array and to reduce the level of the secondary lobes by adjusting the geometrical 

and electric parameters of the array. The radiation patterns, the directivity, and the array factors of the uniform 

and the non-uniform methods are presented. It is shown that the Chebyshev arrays have better directivity than 

binomial arrays for the same number of elements and separation distance, while binomial arrays have very low 

side lobes compared with Chebyshev and uniform excitation arrays. Finally, numerical results of both methods 

are analyzed and compared. 
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I. Introduction 
 

Over the past few decades, since the concept of 

using antenna arrays instead of a single element has 

been developed, researchers have taken on the chal-

lenge of providing various array designs to tailor ra-

diation characteristics according to system require-

ments [1]. Synthesizing an array depends on several 

factors, such as the requirements of the radiation pat-

tern, the directivity pattern, etc. The radiation pattern 

depends on the number and the type of elements be-

ing used, and the physical and electrical structure of 

the array. Numerous variations of antenna structures, 

as well as the type of elements are available, but for 

simplicity only one kind of element is used in the 

whole array structure [2]. In other words, an antenna 

array is composed of an assembly of radiating ele-

ments in an electrical or geometrical configuration 

and, in most cases, the elements are identical (Fig. 1). 

The total field of the antenna array is found by vector 

addition of the fields radiated by each individual 

element. Five controls in an antenna array can be 

used to shape the pattern properly: the geometrical 

configuration of the overall array, the spacing be-

tween the elements, the excitation amplitude of the 

individual elements, the excitation phase of the indi-

vidual elements, and the particular pattern of the in-

dividual elements [2-5]. 

Many communication applications require a 

highly directional antenna. Array antennas have 

higher gain and directivity than an individual radiat 

 

 

 

ing element. A linear array consists of elements 

placed in a straight line with a uniform spacing be-

tween the elements [6]. The goal of antenna array 

geometry synthesis is to determine the physical lay-

out of the array which produces a radiation pattern 

that is closest to the desired pattern [5]. 

For the synthesis of the radiation pattern of an-

tenna arrays, various analytical and numerical meth-

ods of optimization (End-Fire, Broadside, Hansen-

Woodyard, binomial, Dolph-Chebyshev, Neural, Ge-

netic, etc.…) were developed and applied [5-10]. 

Here, our focus is related to the various analytical 

methods. In particular, the non-uniform Dolph-

Chebyshev and binomial methods will be applied to 

the synthesis of linear antenna arrays. 

In this paper, we investigate the radiation pattern, 

the beam-width at half-power, the array factor and 

the directivity of the array. In addition, these parame-

ters are comparatively investigated for uniform and 

non-uniform methods. Finally, we make a more de-

tailed analysis of the influence of the number of ele-

ments and the spacing or distance between the ele-

ments on the main characteristics of the antennas.  

We also compare numerical results from all of the 

different analytical methods. 

The paper is organized as follows: In Section II, 

we introduce the problem formulation. Section III 

describes the Dolph-Chebyshev method. Section IV 

describes the binomial method. Numerical results are 

presented and analyzed in Section V, and finally, 

section VI is devoted to the conclusion. 
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Figure 1. Sketch of a linear antenna array. 

 

II. Problem formulation 
 

Let us consider a linear array of N - elements 

aligned along the z axis, at equal separation d  

from one another, as the diagram of Fig. 2 shows. 

The expression of the array factor for this case is 

given by the relation: 

nN

n nZIAF 





1

0
,                     (1) 

where nI  is the amplitude of the current excitation of 

the 
thn  element, 

 jeZ ,  )cos(kd ,   is 

the angle between the radiation direction nr  and the 

axis of the array,   2k  is the wave number,   is 

the wavelength, and   is the progressive phase dif-

ference between the elements. 

For a symmetrical distribution of the current 

excitations, equation (1) becomes: 
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For an even number of elements, this array factor can 

be written as: 
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In equation (3), 0I  represents the current excita-

tion of the central element of the array. If the spacing 

between elements is not identical, the array is known 

as a linear non-uniform array, and this condition 

forces a modification of the array factor in equations 

(2) and (3). However, the correspondence between 

the array factor of linear uniform array of N - radiat-

ing elements (equations (2) and (3)) and the non-

uniform one is carried out either by using the bino-

mial method or with Chebyshev polynomials of order 

 1N .  By matching similar coefficients we obtain 

the excitation currents, nI , required.  In such cases, 

the array factors will be written in the following way:  
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for an even number of sources, and                                        
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for an odd number of sources, where 



 cos

d
u . 

If we use a binomial expansion to determine these 

coefficients, the array is known as non-uniform bi-

nomial. On the other hand, if it utilizes Chebyshev 

polynomials, we refer to it as a non-uniform Dolph-

Chebyshev array. For each array, it is necessary to 

determinate the array factor, the radiation pattern, the 

directivity (  
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Figure 2. Geometry of the problem, showing a 

linear antenna array of N  sources. 

 

III. Binomial array 
The general problem of the synthesis of arrays is 

similar to the problem of the synthesis of filters in the 

theory of linear circuits, with the angle   replacing 

the frequency. It should be noticed that if the array 

does not have axial symmetry, we need two angles,  

  and  , to define each direction of radiation, and 

then the problem becomes more complicated. But we 

will confine ourselves here to arrays with axial sym-

metry. 

In theory, we give ourselves a whole set of speci-

fications relating to the behaviour of the array factor 

according to the angle (a gauge), and then the 

mathematical problem consists of synthesizing a 

function, )(AF , obeying this gauge. The idea of the 
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binomial array is to ask if we can eliminate the sec-

ondary radiation lobes by using a different distribu-

tion function for the amplitudes of the excitation cur-

rents of the antenna array. Indeed, it is known that in 

the case of an equidistant array, the appearance of 

secondary lobes is inevitable when the number N  of 

elements increases. Moreover, the level of these lobes 

never goes down below the limit of - 13.3 dB. 

On the basis of the idea of Serguei A. Schelkun-

off, which rests on a simple mathematical relation 

such that with the complex auxiliary variable, 
)cos( jkde , the array factor in the linear equidis-

tant case becomes , )( )cos(
1

0

 jnkd
N

n

neIAF 






 

where 

nI
 
are the excitation currents.  )(AF  has an ampli-

tude and a phase, and becomes a polynomial of the 

complex variable  , where the complex coefficients 

are the excitations of the elements.  Assuming that 

for an initial array with only two elements, 

  11)( jeAF ,  

it is seen that the complex polynomial 1  is can-

celled only if  1 .  Further, it is known that if a 

function is not null for a certain value of the variable, 

the successive powers of this function are always 

non-zero.  

The idea is then to try to synthesize a radiation 

pattern given by: 
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where 
))cos((   kdjj ee . The solution is thus 

to give to the array elements excitation ampli-

tudes, nI
 
, corresponding to the coefficients of the 

binomial theorem. These are known since the only 

directions of null radiation are those of the initial 

array with two elements. In this way, we can control 

the existence of the secondary lobes. 

 

IV. Dolph-Chebyshev array 
 

Dolph indicated a method based on properties of 

the Chebyshev polynomials, which gives the possibil-

ity of obtaining the maximum gain for a fixed level 

of the secondary lobes imposed. This method uses the 

fact that the optimal distribution of the sources ampli-

tudes is the one which gives, for the expression of the 

radiated field by an alignment of N  sources, the 

Chebyshev polynomials of the degree )1( N . These 

polynomials always present a significant maximum 

level which corresponds to the maximum of the main 

lobe of radiation.  In addition, the polynomials pre-

sent a succession of maxima and minima of equal 

amplitudes, which correspond here to the secondary 

lobes. Thus, we will present the synthesis of the de-

sired radiation pattern by using Chebyshev polyno-

mials of degree 20, )( 019 xT , which will correspond, 

in the Dolph method, to the radiation pattern of an 

alignment of 20 sources [7].  

With this method, all the secondary lobes of the 

pattern have the same level, which can present disad-

vantages if we wish that the antenna ensures a certain 

protection against jammers far away from the axis of 

the maximum radiation. On the other hand, we can 

show that an array built according to this method 

always presents the maximum gain compatible with 

the selected level of the secondary lobes. 

In practice, the calculation of the distribution of 

amplitudes will be made as follows:  we fix the rela-

tionship, 0R , between the amplitude of the maximum 

field of the main lobe and that of the secondary lobes. 

Then 0R  allows the definition of a parameter 0x , by 

the formula: 
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V. Results and discussion 
 

It is known that the radiation pattern of an array 

is the product of the radiation pattern of an isolated 

element multiplied by the array factor. The array fac-

tor translates the effect of the relative position and the 

excitation of the elements. Clearly, the array factor is 

the radiation pattern which would be obtained if all 

the elements of the array were isotropic sources.   

Figure 3 presents normalized array factors of the 

Broadside (array with transverse radiation), End-Fire 

(array with transverse radiation), and Hansen-

Woodyard considered as uniform arrays, i.e., with all 

the elements having identical excitation amplitudes. 

The array is composed of 11 sources with spacing 

between elements of 25.0 .  In the case of the 

Broadside array, the normalized array factor is di-

rected towards 
900  . In other words, there is no 

main maximum in other directions. We can note that 

obtaining this orientation requires a choice of the 

excitation function and the appropriate number of 

elements, taking into account the spacing between the 

elements (which must be lower than   to avoid un-

matched lobes). Research has shown that for a sepa-

ration between elements equal to 2 , the Broadside 

radiation will see the appearance of the maximum 

lobes. The End-Fire array presents the maximum 

radiation directed along the axis  )180( 0
 . If the 

separation between elements is equal to 2 , the 

End-Fire radiation exists simultaneously in the two 
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directions : 
00   and 

1800  . Concerning the 

curve of the array factor for Hansen-Woodyard, we 

see that the first desired maximum depends on the 

progressive phase  . If kd , the first desired 

maximum tends either towards 0° (  kd , or 

towards 180°  kd . Several researchers have also 

shown that the Hansen-Woodyard array is only an 

extension of the End-Fire array.  

 

 
 

Figure 3. Normalized array factor of Broadside, 

End-Fire and Hansen-Woodyard arrays for 
11N  and  25.0d . The curve for the array 

factor of Hansen-Woodyard shows that the first 

desired maximum depends on the progressive 

phase  . If kd , the first desired maximum 

tends either towards 0° (  kd , or towards 

180°  kd . 

 

Figure 4 presents the radiation patterns of Broad-

side, End-Fire and Hansen-Woodyard arrays for 

11N  and  25.0d . As the results of simulations 

show, the Broadside array presents a narrow beam. 

As for the Hansen-Woodyard array, its conditions 

lead to a greater directivity than those given by End-

Fire.  However, we should specify that, these condi-

tions do not necessarily bring back the desired maxi-

mum directivity. The maximum cannot even occur at 
00   or

1800  , and research shows that the 

level of the secondary lobes cannot be greater than 

13.46 dB. Clearly, the main maximum and the level 

of the secondary lobes depend on the number of ele-

ments of the array. Research also shows that for a 

rather large uniform array, the Hansen-Woodyard 

array can also improve directivity for spacing be-

tween the elements approximatively equal to 4 .   

 
Figure 4. Radiation patterns of Broadside, End-

Fire and Hansen-Woodyard arrays for 11N
 

and  25.0d . For a rather large uniform array, 

the Hansen-Woodyard array can also improve 

directivity for spacing between the elements ap-

proximatively equal to 4 .  

 

Tables 1 (a) and (b) show and analyze the radia-

tion characteristics of the uniform arrays of Broad-

side, End-Fire and Hansen-Woodyard for linear an-

tennas of 11 sources and various spacing between the 

sources.  The tables show, (a) the level of the secon-

dary lobes and the directivity, and (b) the beam-width 

at half power. We note that for the Broadside array, 

an increase in spacing between elements leads to deg-

radation of the directivity and the level of the secon-

dary lobes, while the beamwidth at half-power im-

proves considerably. The best characteristics of radia-

tion are obtained with  25.0d . End-Fire and Han-

sen-Woodyard arrays present the best characteristics 

of radiation when  25.0d  and  55.0d , respec-

tively. For the End-Fire and Hansen-Woodyard ar-

rays, an increase in spacing between the elements 

also considerably improves the beam-width at half-

power, but with certain variations when  5.0d  for 

the End-Fire array and when d  for the Hansen-

Woodyard array. Thus, from the analysis of these 

uniform arrays, the data shows that the variation of 

spacing between elements makes it possible to im-

prove at most two of the above-mentioned radiation-

characteristics, but not more. In other words, it is 

difficult to optimize more than two characteristics at 

the same time. We also note that the improvement of 

one characteristic occurs in general at the detriment 

of another. Several researchers have shown that the 

directivity of a Hansen-Woodyard array is always 
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approximatively 1.805 times (or 2.56 dB) larger than 

that of an ordinary End-Fire array [3], but our analy-

sis, as shown in Table 1(a), indicates that this rela-

tionship does not uniformly apply.  

 

 
Table 1. Tables 1 (a) and (b) show and analyze the radiation characteristics of the uniform arrays 

of Broadside, End-Fire and Hansen-Woodyard for the linear antennas of 11N   sources and 

various spacing between the sources. It is about (a) the level of the secondary lobes, of the directiv-

ity and (b) of the half-power of beam-width. It arises that the variation of spacing between ele-

ments makes it possible to improve one to two above mentioned characteristics of radiation but, 

not more. In other words, it is difficult at the same time to optimize more than two characteristics.  
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Figure 5. The normalized array factor of the bi-

nomial array of 11N  sources, with spacing be-

tween elements varying from 25.0  to  . The 

binomial array with spacing between elements less 

than or equal to 2  does not have secondary 

lobes. 

 

 
Figure 6. Radiation patterns of the binomial array 

of 11N  sources, with spacing between elements 

varying from 25.0  to  . The binomial array 

usually has the smallest secondary lobes. 

 

Figure 5 presents the normalized array factor of a 

binomial array of 11 sources, with spacing between 

elements varying from 25.0  to  . The analysis of 

the results shows that for a distance between ele-

ments less than or equal to a half-wavelength, the 

secondary lobes are nearly non-existent. In other 

words, a binomial array with spacing between ele-

ments less than or equal to 𝜆/2 does not have secon-

dary lobes. The secondary lobes appear when the 

spacing between elements is greater than 5.0 . If the 

spacing reaches the value 𝜆, the secondary lobes ap-

pear within 
0  and

180 , in other words, as secon-

dary maxima.  

Figure 6 presents the radiation patterns of a bi-

nomial array of 11 sources with spacing between 

elements varying from 25.0  to  . The analysis of 

the curves shows that for a binomial array of anten-

nas with spacing between elements less than a half-

wavelength, the radiation pattern does not have sec-

ondary lobes. Thus, the array is less noisy (or at least 

its intrinsic temperature is lower) and we can detect 

weaker signals. For a spacing of greater than 75.0 , 

we note the appearance of secondary lobes, as seen in 

Fig. 5. If we increase this spacing further to one 

wavelength, the radiation is not solely in Broadside 

but also in End-Fire. We can thus conclude that the 

optimal spacing for the binomial array is obtained 

when  65.01.0 d . Although the binomial dis-

tribution eliminates the zeros and small lobes (com-

pare Fig. 6 with Fig. 4), the width of the beam emit-

ted by the array decreases and, consequently the di-

rectivity improves. Let us notice that in the large-

sized arrays, the amplitudes of the currents can vary 

considerably (according to the particular distribution 

pattern), which is likely to cause difficulty obtaining 

and preserving sufficiently stable power levels.  

Tables 2 (a) and (b) present and analyze the ra-

diation characteristics of the binomial and Dolph-

Chebyshev arrays with odd and even numbers of 

elements, i.e., with 11 and 20 sources, and with spac-

ing between sources varying from 25.0  to  . Table 

(a) shows that the best secondary lobe level for even 

and odd numbers of elements is obtained with 

 75.0d . The directivity for either an even or odd 

number is also degraded with increased spacing be-

tween the elements.  However, this trend reverses 

when d .  Lastly, the beam-width at half-power, 

as shown in Table (b), decreases with the growth of 

spacing between elements, but it dramatically in-

creases at d .  The difference between the bino-

mial array and the Dolph-Chebyshev is that Dolph-

Chebyshev has a fixed secondary lobe level. In our 

case, its value is -20 dB.   
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Table 2.  Tables 2 (a) and (b) present and analyze the radiation characteristics of the b3inomial and 

Dolph-Chebyshev arrays for 11 and 20 sources with spacing between sources varying from 25.0  to  .  

The difference between the binomial array and the Dolph-Chebyshev is that Dolph-Chebyshev has a fixed 

secondary lobe level. 

 

The analysis of the two non-uniform arrays 

shows that for the same number of elements, the bi-

nomial array has the best results concerning the di-

rectivity and the level of the secondary lobes. The 

Dolph-Chebyshev array, on the other hand, has the 

best overall beam-width at half-power. As we men-

tioned above for the uniform arrays, it is difficult to 

concurrently optimize more than two characteristics 

of the radiation. Research has shown that the greatest 

disadvantage of a binomial array is the variation of 

the excitation amplitudes of the various elements of 

the array, especially when the number of elements is 

rather high.  

The distribution technique which avoids the dis-

advantages discussed above is the Dolph-Chebyshev 

distribution. When we implement this distribution, it 

is necessary to specify the maximum level imposed 

on the secondary lobes if we want the minimum re-

duction of the width of the beam between first zeros, 

or inversely, it is necessary to specify the width of the 

beam between first zeros to reduce the secondary 

lobes to their minimum level.  

 
Figure 7. The normalized array factor of the 

Dolph-Chebyshev array for 11N  with various 

spacings:   25.0d ,  5.0d ,  75.0d  and 

d .  The desired secondary lobe level is fixed 

at -20 dB. We note that for a distance between the 

elements d , we have only one maximum pre-

sent at Broadside  90 . As soon as this dis-

tance exceeds one wavelength  d , two other 

maxima also appear, at 
0  and 

180  (End-Fire 

radiation).  
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Figure 7 presents the normalized array factor of 

the Dolph-Chebyshev array for 11N  with various 

spacings:  25.0d ,  5.0d ,  75.0d  and 

d .  The desired level of secondary lobes is fixed 

at -20 dB. We note that for a distance between the 

elements d , we have only one maximum present 

at Broadside  90 .  As soon as this distance ex-

ceeds one wavelength  d , two other maxima 

also appears, at 
0  and 

180  (End-Fire radiation). A 

progressive increase of this distance considerably 

decreases the width of the main lobe, thus improving 

the overall directionality of the array. 

 

 
 

Figure 8. The radiation patterns of the Dolph-

Chebyshev array for 11N  with various spac-

ings:   25.0d  and d . 

 

Figure 8 presents the radiation patterns of the 

Dolph-Chebyshev array for 11N  with two differ-

ent spacings:  25.0d  and d . The directivity 

for Chebyshev is better than that of a binomial array 

for the same number of elements and separation dis-

tance.  For a desired secondary lobe level, the beam-

width at half-power and the directivity of the radia-

tion patterns represented in Fig. 8 are given by using 

the following formula for approximating the widen-

ing of the array factor:          

  ,coshcosh
2

636.01

2

22

0
1

0 





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







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R
f      (7)     

where 0R  is the ratio of the  amplitude of the main 

lobe to the 1
st
 secondary lobe, as defined earlier. The 

factor of  beam-widening matches the diagram of 

figure 8 according to the level of the secondary lobes. 

The results clearly show by application of this for-

mula that a larger value of 0R
 
leads to a considerable 

decreasing of the secondary lobe level. As in the case 

with the array factor, the desired radiation in Broad-

side, with a fixed level of secondary lobes equal to -

20 dB for our case, is optimal only for one distance 

between elements d .  In contrast, however, two 

other secondary lobes will appear in the radiation 

pattern with the same amplitude as the main lobe in 

End-Fire. 

 

VI. Conclusion 
 

In this paper, we present the solution for the 

problem of synthesis of uniform and non-uniform 

linear antennas arrays. We determine the level of 

secondary lobes, the directivity, and the beam-width 

at half-power of each array. We can conclude by ob-

serving that:  

●  the directivity for Chebyshev is better than that 

of a binomial array for the same number of ele-

ments and separation distance, 

●  the optimal spacing for the Chebyshev array is 

95.0d , which gives the best radiation prop-

erties, while for the binomial array the optimal 

dimension is 75.0d ; the uniform array with 

spacing between the elements 95.0d  has the 

best radiation properties, 

●  the binomial array has very low secondary lobes 

compared with Chebyshev and uniform excita-

tion arrays because the coefficients of excitation 

of the binomial array are very large, 

●  the binomial array usually has the smallest sec-

ondary lobes, followed in order by the Dolph-

Chebyshev array and the uniform arrays. 

●  for the three distributions, uniform, binomial, 

and Dolph-Chebyshev, the uniform distribution 

of amplitude achieves the smallest beam-width at 

half-power. Next in order comes the Dolph-

Chebyshev array and the binomial array.   

Finally, it is clear that for a better synthesis of 

antennas arrays, the designer must find a compromise 

between the level of the secondary lobes and the 

beam-width at half-power. The greatest challenge 

will consist in determining or choosing the values of 

the coefficients of excitation for a desired pattern of 

radiation.   
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